Eutrophication Assessment using ASSETS Approach, Application and Results

S. Bricker, J.G.Ferreira, R. Pastres

NOAA, National Oceanic and Atmospheric Administration, USA IMAR, Institute of Marine research, Portugal Universita Cà Foscari, Venice, Italy

> Venice Water Authority Meeting Exploring possibilities for collaborative work December 3rd 2007

http://www.eutro.us

<u>http://ian.umces.edu/neea</u>

http://www.eutro.org

Topics

Problem definition
ASSETS approach
Example results
Assessment case-studies
ASSETS special applications
Conclusions

3

4

3

34+2

Coastal eutrophication Drivers-Pressure-State-Response

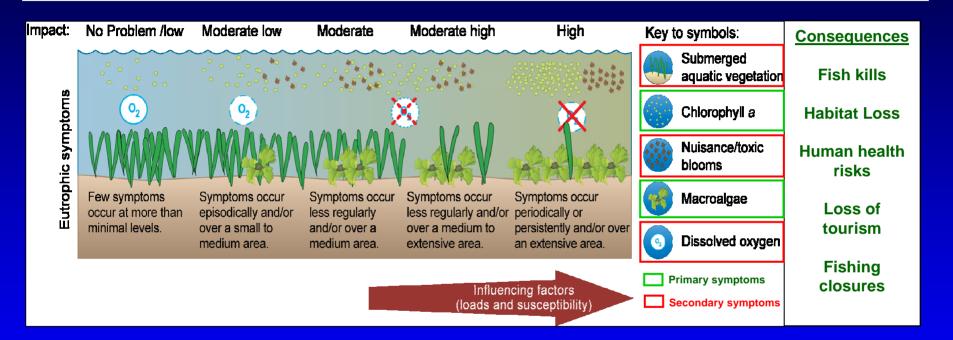
<u>Drivers</u>

- Agriculture loss of fertilizer, etc
- Urban and industrial discharges
- Aquaculture
- Atmospheric deposition
- Internal (secondary) sources (e.g. P from sediments)
- Advection from offshore (e.g. N and P, certain types of HAB)

<u>Pressure</u>

N and P loading to the coastal system
HAB phytoplankton "loading" from offshore

Response


- Fertilizer reduction
- WWTP (sewage, industry)
- Emmission controls
- Sediment dredging etc
- Time...
- Interdiction (e.g. HAB events)
- And aquaculture?

State

- Primary symptoms
 - Decreased light availability
 - Increased organic decomposition
 - Algal dominance changes
- Secondary symptoms
 - Loss of SAV
 - Low dissolved oxygen
 - Harmful algae

The Problem – The Assessment Approach

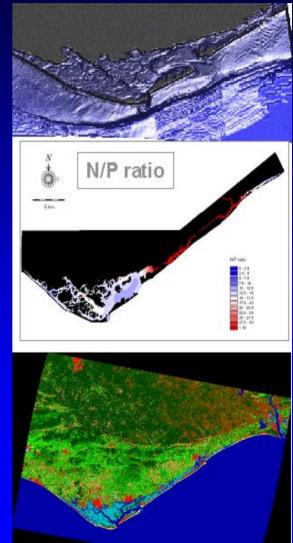
Symptoms and Consequences of Nutrient Enrichment

ASSETS: Pressure - State - Response

P: Influencing Factors – Natural processing + Human Nutrient Load

- S: Overall Eutrophic Condition Condition of waterbody
- **R: Future Outlook What will happen in the future?**

http://www.eutro.org


http://ian.umces.edu/neea

http://www.eutro.us

The Context and Guiding Legislation

- US Clean Water Act of 1972, US Harmful Algal Bloom and Hypoxia Research and Control Act of 1998
- EU Water Framework Directive (2000/60/EC), EU older generation directives, such as UWWTD and Nitrates – Definition of Sensitive Areas and Vulnerable Zones
- Eutrophication is a significant problem worldwide (US, EU, Mediterranean, Baltic, Japan, Australia and elsewhere)

http://www.eutro.org http:;//www.eutro.us http://ian.umces.edu/neea

Key Aspects of the ASSETS approach

- The ASSETS approach may be divided into three parts:
- Division of coastal systems
 into homogeneous areas
- Evaluation of data completeness and reliability
- ✓ Application of indices

Tidal freshwater (<0.5 psu)
 Mixing zone (0.5-25 psu)
 Seawater zone (>25 psu)

Spatial and temporal quality of datasets (completeness) Confidence in results (sampling and analytical reliability)

Pressure: Influencing Factors index (susceptibility + nutrient load) State: Overall Eutrophic Condition index (Chl, macroalgae, HABs, DO, SAV loss) Response: Future Outlook index (susceptibility + future nutrient load)

FINAL ASSETS GRADE

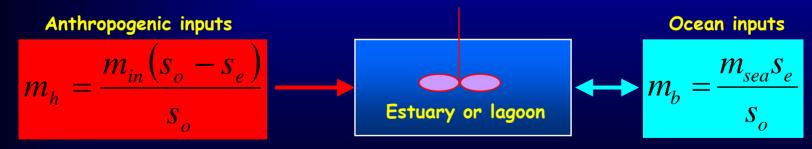
K Guide for management, research, monitoring

ASSETS – Conceptual Approach

EXTERNAL FORCING		PRIMARY SYMPTOMS		SECONDARY SYMPTOMS
	\rightarrow	Decreased light	\rightarrow	Loss of SAV
		availability		SAV Spatial coverage
		Chlorophyll a		SAV Coverage trends
		Macroalgal growth		
	\rightarrow	Increased organic	\rightarrow	Low dissolved oxygen
Nitrogen and		decomposition		Dissolved oxygen
phosphorus		Chlorophyll a		
		Macroalgal growth		
	→	Algal dominance	\rightarrow	Harmful algae
		changes		Nuisance algal blooms
		Diatoms to flagellates		Toxic algal blooms
		Benthic to pelagic algae		

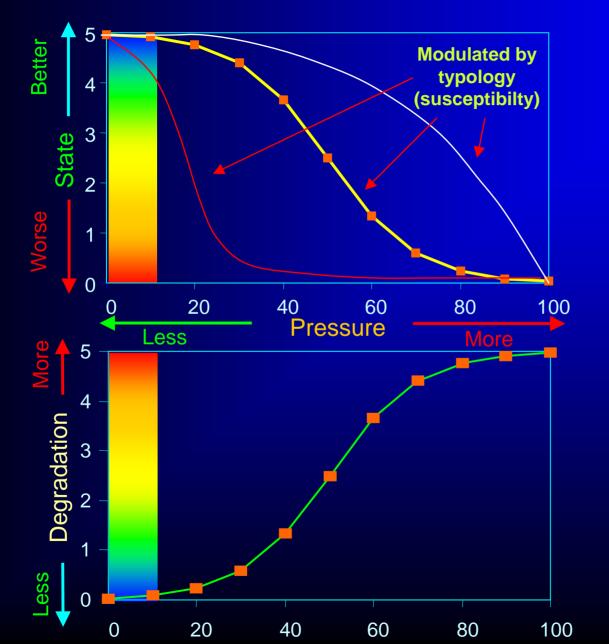
http://www.eutro.org/

Pressure –Influencing Factors


 \Box Calculate m_h, the expected nutrient concentration due to land based sources (i.e. no ocean sources);

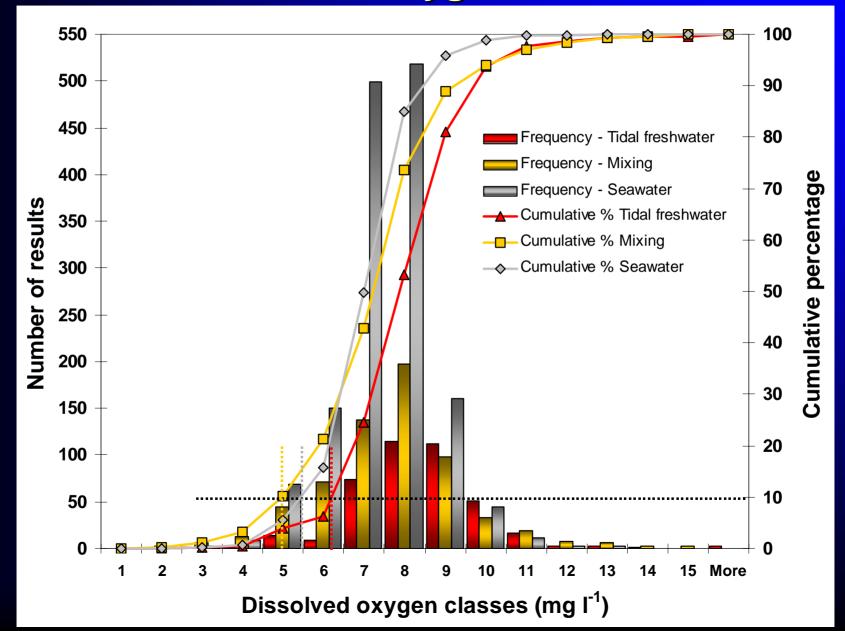
 \Box Calculate m_b, the expected background nutrient concentration due to the ocean (i.e. no land-based sources);

Calculate IF as the ratio of $m_h/(m_h+m_b)$;

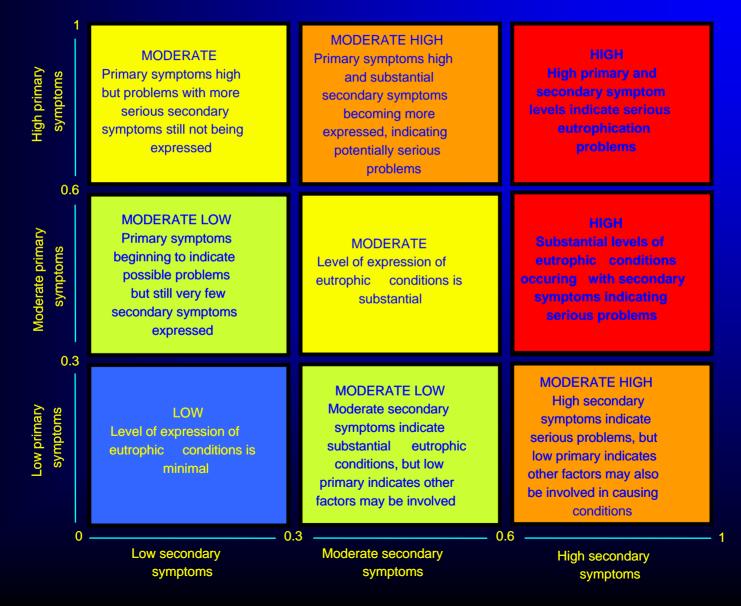

Class	Thresholds
Low	0 to <0.2
Moderate low	0.2 to <0.4
Moderate	0.4 to < 0.6
Moderate high	0.6 to < 0.8
High	>0.8

Equations are based on a simple Vollenweider approach, modified to account for dispersive exchange:

Bricker, S.B., Ferreira, J.G. & Simas, T. – An Integrated Methodology for Assessment of Estuarine Trophic Status. Ecol. Modelling 169: 39–60.


Pressure-State relationships

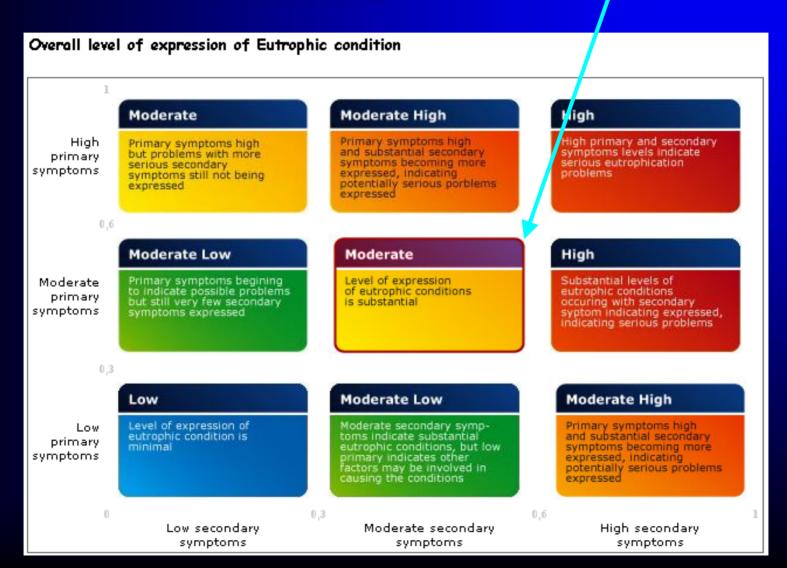
State as a function of pressure


Degradation as a function of pressure

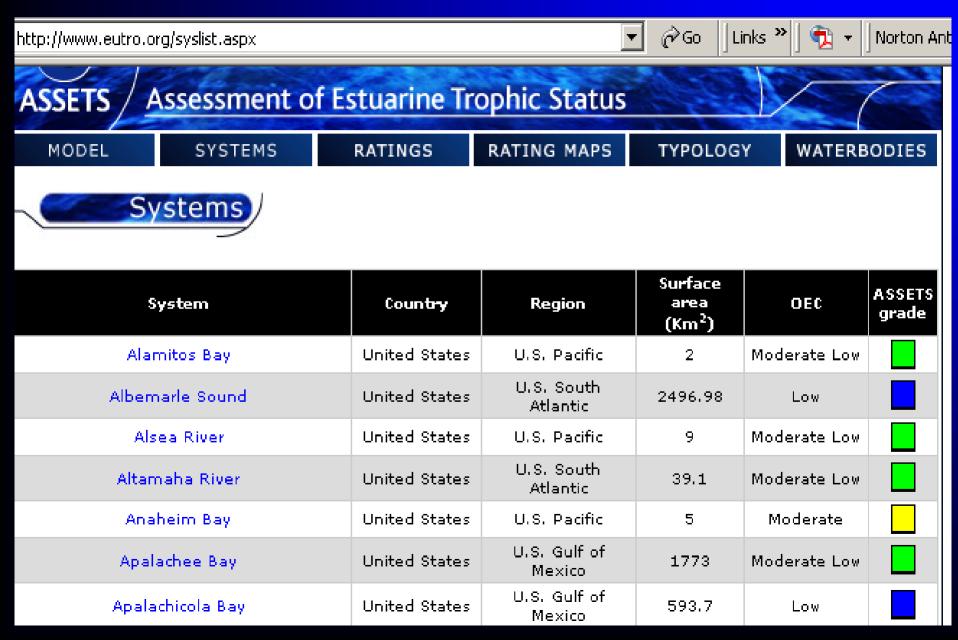
ASSETS calculation of secondary symptom dissolved oxygen scores

ASSETS – Assessment of State

Overall level of expression of eutrophic conditions



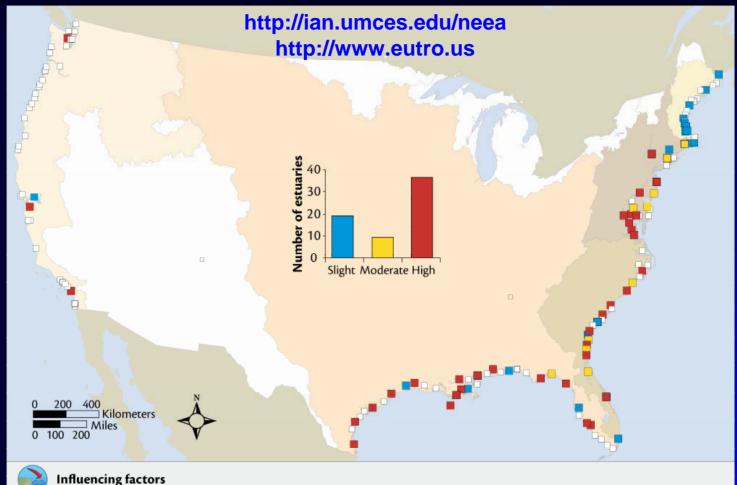
ASSE	ETS s	coring	syste	m for I	PSR
Grade	5	4	3	2	1
<u>P</u> ressure (IF)	Low	Moderate low	Moderate	Moderate high	High
<u>S</u> tate (OEC)	Low	Moderate low	Moderate	Moderate high	High
<u>R</u> esponse (FO)	mprove high	Improve low	No change	Worsen low	Worsen high
Metric		Combinatior	n matrix		Class
					High
Р		5554			(5%)
S		5555			
R		5435	43		
					Good
Р	55	5 5 5 5 5 4 4 4	4 4 3 3 3 3 3 3	3	(19%)
S		4 4 4 4 4 5 5 4			
R	2 1 :	5 4 3 2 1 2 1 5	4 3 5 4 3 5 4	3	
					Moderate
P 55	555444	4 4 4 4 3 3 3 3	3 3 3 2 2 2 2	2222211	
S 33	3 3 3 4 4 3	3 3 3 3 5 5 4 4	3 3 3 4 4 4 4	4 3 3 3 2 3 3	(32%)
R 21	5432154	4 3 2 1 2 1 2 1 3	5 4 3 5 4 3 2	1543554	
					Poor
Р	44444	3 3 3 3 3 3 3 2	2222211	111	(24%)
S	22222	3 3 2 2 2 2 2 3	3222233	3 2 2	(2470)
R	54321	2 1 5 4 3 2 1 2	1432132	2154	
Р	3.3	3 3 3 2 2 2 2 2 2	1 1 1 1 1 1 1	1	Bad
S		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			(19%)
R		32154321			
n n					


ASSETS – Classification of State

http://www.eutro.org

Boston Harbor

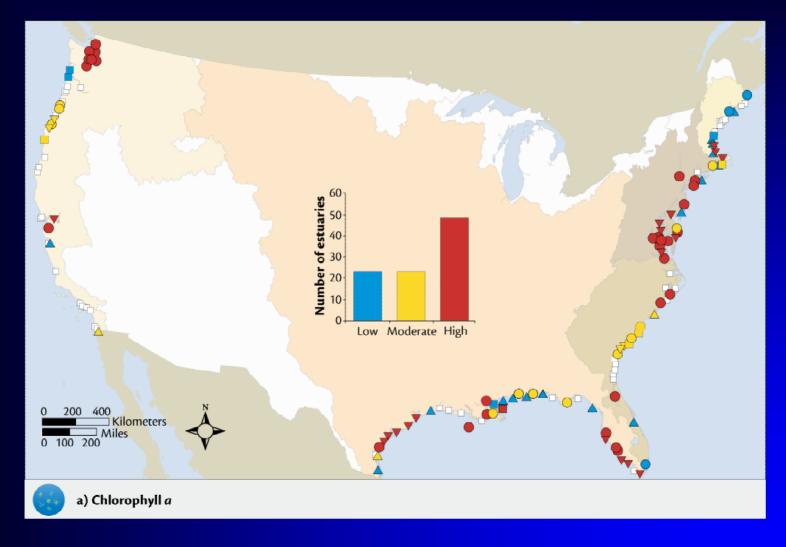
ASSETS – Classification of State


Strangford Lough, N. Ireland ASSETS Application

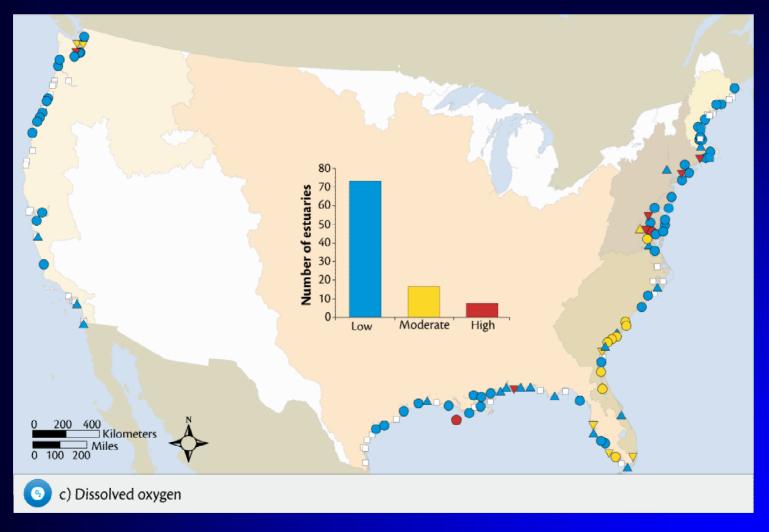
ACCETC. LICH

					ASSETS: HIGH
Indices	Methods	Parameters	Rating	Expression	Index
Influencing	Sussentibility	Dilution potential	High	Low	
Factors (IF) ASSETS: 5	Susceptibility	Flushing potential	Moderate	susceptibility	Low
	Nutrient inputs		Low		
		Chlorophyll a	Moderate		
Overall Eutrophic	Primary	Macroalgae	Problems observed	Moderate	
Condition (OEC)		Dissolved Oxygen	No problems	LOW	
ASSETS: 5	Secondary	Submerged Aquatic Vegetation	Losses observed	Low	
		Nuisance and Toxic Blooms	Νο		
Future Outlook	F (Euturo putri	ent pressures d		
(FO) ASSETS: 4	Future nutrient pressures	Future nutri	Improve Low		
1					

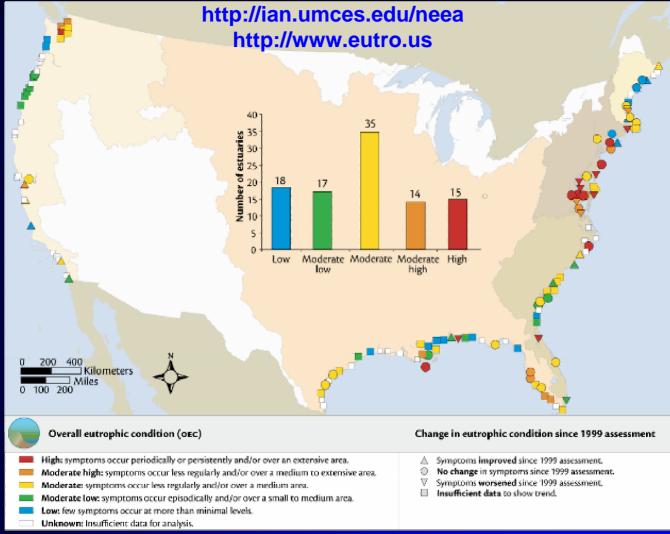
<u>http://www.eutro.org/</u>


Influencing Factors

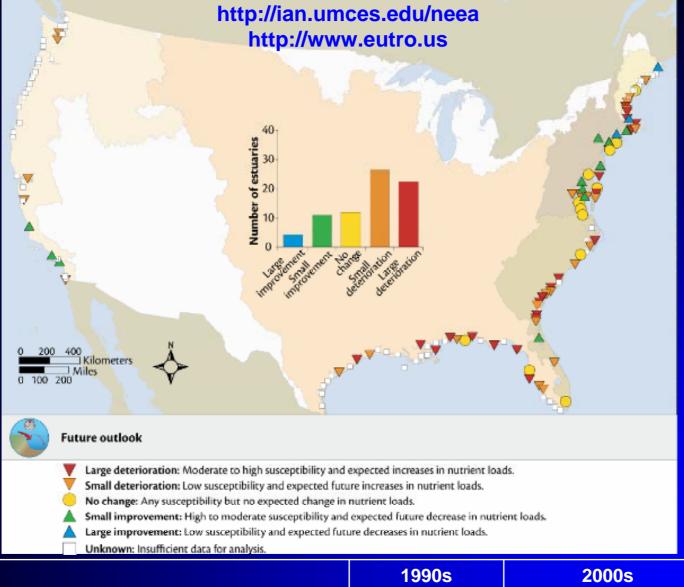
- Highly influenced: High susceptibility and moderate or high nutrient loads.
- Moderately influenced: Moderate to high susceptibility and low to moderate nutrient loads.
- Slightly influenced: Low to moderate susceptibility and low to moderate nutrient loads.
- Insufficient data: Insufficient data for analysis.


	1990s	2000s
Assessed systems with moderate to high rating	69%	72%
Unknown systems	2	76

Symptom Expression - Chlorophyll a


Most commonly reported symptom

Symptom Expression - Dissolved Oxygen


Not a widespread problem

Overall Eutrophic Condition

	1990s	2000s
Assessed systems with moderate to high rating	69%	65%
Number of systems - Unknown	17	42

Future Outlook

	19905	20005
Assessed systems expected to worsen	71%	65%
Assessed systems expected to improve	7%	20%

Overalll Eutrophic Condition Changes USA: 1990s – 2000s

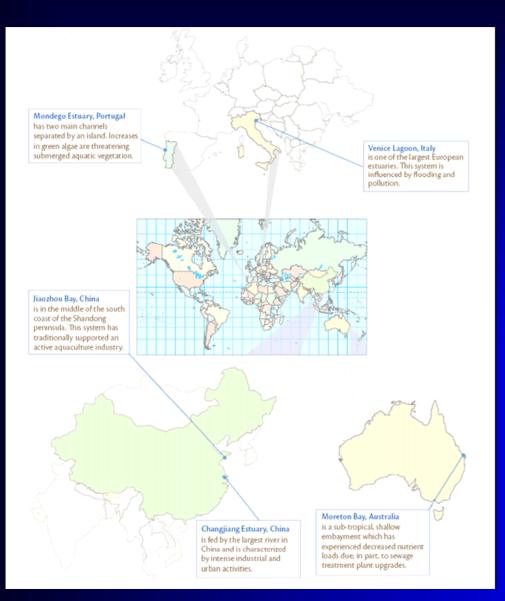
Improved:

13 systems (9%) assessed surface area

Due to management efforts, primarily point source

<u>Worsened</u>: • 13 systems (14%) assessed area • Due to population increase and associated activities

Remained the same:


32 systems (77%) assessed area

Analysis was possible for 58 of 141 systems

Trends - mid Atlantic Systems

b) Overall eutrophic condition & eutrophic symptoms						Eutro	phic condition in 2004						
	Overall eutrophic condition	Overall confidence expression	Chlorophyll a	Macroalgae	Dissolved oxygen	Nuisa nce/ toxic blo oms	SAV	<u> </u>	ligh Aoderate high Aoderate Aoderate Iow				
Estuary				-	0		W		ow nsufficient data				
1. Buzzards Bay	∇	**		∇	\bigcirc	∇			lot historically				
2. Narragansett Bay	×.	**	Ō	Ý	V	Ò	ŏ	С	bserved				
3. Gardiners Bay	À	**	Ă	Ó	Ó	Ă	\square	Ove	rall confidence				
4. Long Island Sound		**					$\overline{\mathbf{O}}$	expi	ression in 2004				
5. Connecticut River	•	*			0	0		* * *	High				
6. Great South Bay	0	**			0	0			Moderate				
7. Hudson River/Raritan Ba	/ 🔘	*			\mathbf{A}				Low				
8. Barnegat Bay		***			\bigcirc				ge in eutrophic				
9. New Jersey Inland Bays		*			igodol	\circ			tion since 1999 ssessment				
10. Delaware Bay	0	***	▼	\bigcirc	\bigcirc	\bigcirc	NH		mproved				
11. Delaware Inland Bays		***	0		igodol		\bigcirc	~	o change				
12. N. Maryland Coastal Bays (Isle of Wight/Assawoma		***		∇	•		ightarrow	Vν	Vorsened				
13. S. Maryland Coastal Bays (Chincoteague/Sinepuxe		***	▼		ightarrow	▼	•		nsufficient data				
14. Chesapeake Bay Mainste	m 🔴	***		$\overline{}$						0/ 0	ecocod	ovetome v	vith
15. Patuxent River		**			$\mathbf{\nabla}$	\triangle	\land					systems v	
16. Potomac River		***			\triangle				IVIOC	derate	& High s	ymptom e	xpression
17. Rappahannock River	∇	**		\bigcirc	0	∇	$\overline{}$		Indicat	.	1000	2004	% obonco
18. York River	0	***		∇	\mathbf{A}	∇			Indicat	Ur	1999	2004	% change
19. James River	∇	**		\bigcirc	0	∇	\bigcirc		Chl a	1	100	86	-14
20. Chester River		**			▼		\bigcirc		HABs				
21. Choptank River		***		\mathbf{A}	\bigcirc	$\mathbf{\nabla}$	\land				50	63	13
22. Tangier/Pocomoke Sound	ds 🔵	**			\circ		\triangle		Overall e	eutro	68	91	23

International Case Studies

Some examples:

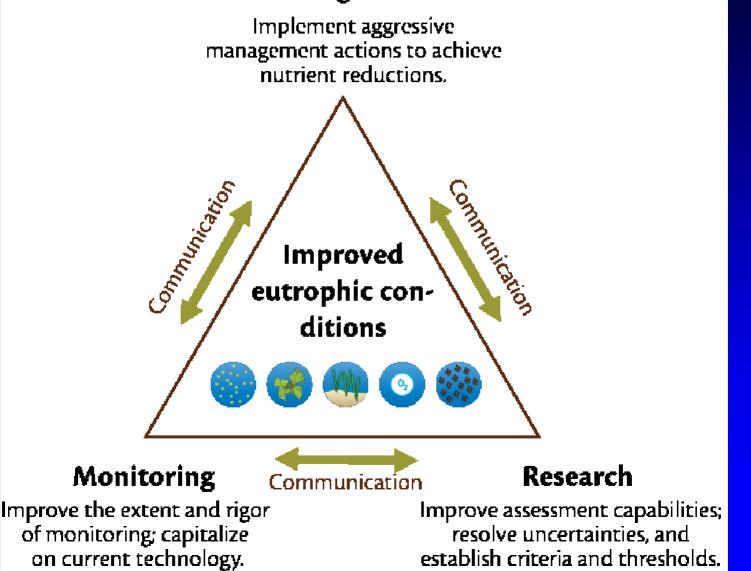
Boston Harbor

Diversion of sewage effluent to offshore discharge reduced eutrophic symptoms

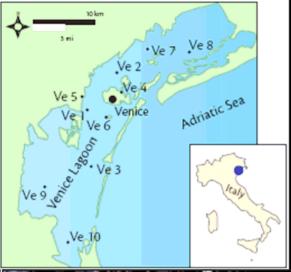
Long Island Sound

Reduction in point source nutrients ameliorated hypoxia in the 1990s

Venice Lagoon, Italy


Flood protection measures can accentuate eutrophic symptoms (e.g., dissolved oxygen, macroalgae, and loss of SAV)

Jiaozhou Bay, China


Threats from eutrophication to large scale aquaculture stimulate nutrient management)

Recommendations

Management

Venice Lagoon case study: The Problem

<u>1960s and 1970s</u> Uncontrolled discharge of nutrients

<u>**1980s</u>** Hypereutrophic conditions</u>

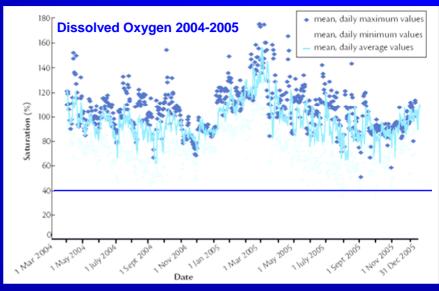
Macroalgal density = 20 kg FW m^{-2}

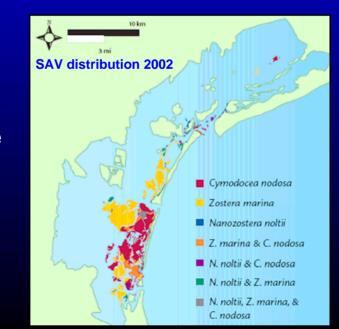
Loss of SAV beds and change in species abundance

Severe anoxia in parts of the lagoon

Venice Lagoon case study: The Solution

<u>1980s</u>


 Wastewater treatment plants (WWTP) built
 Phosphorus banned from detergents and replaced by zeolites


<u>1990s to present</u>

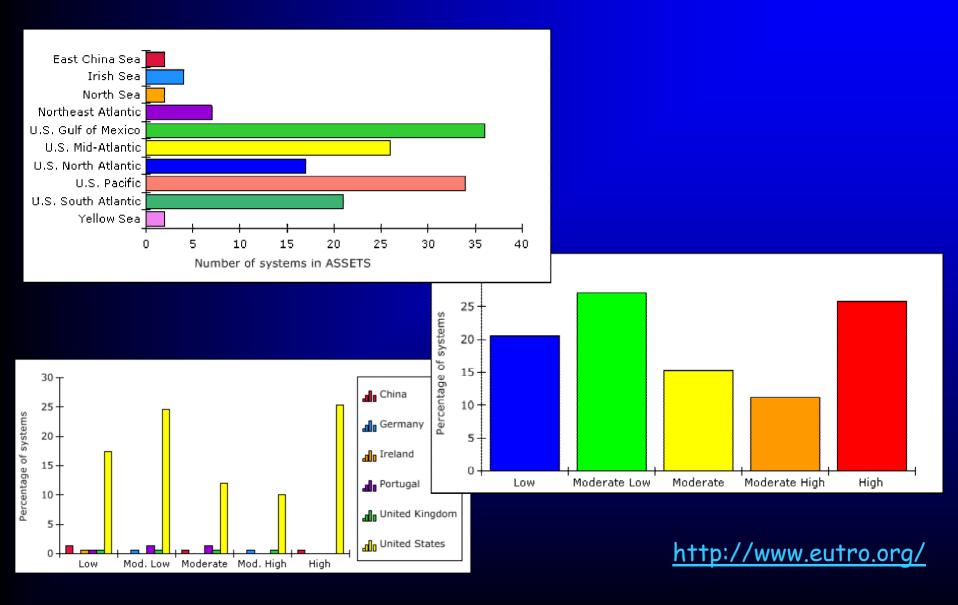
- Decrease in nutrient loads and P concentrations
- Macroalgal density now 0.5 FW m⁻²
- □ SAV beds returning since 1992:
- Zostera marina increased (2.6 22 km²) together with Cymodocea nodosa
- Nanozostera noltii decreased (14 0.7 km²). This may be linked to light limitation due to other factors
- □ No anoxia DO at 40% saturation, adequate for aquatic life

<u>Future</u>

- □ New WWTP and phytodepuration plants planned
- Industrial zone effluents closely monitored
- Continued improvement expected

Venice Lagoon ASSETS Application (early 2000s)

	 _	
ASS		
AUU		


Indices Influencing Factors (IF) ASSETS: 3	Methods Susceptibility	Parameters Dilution potential Flushing potential	Rating Moderate Moderate	Expression Moderate susceptibility	Moderate
	Nutrient inputs		Moderate		
		Chlorophyll a	Low		
Overall Eutrophic	Primary	Macroalgae	Low	Low	
Condition (OEC)		Dissolved Oxygen	Low		LOW
ASSETS: 5	Secondary	Submerged Aquatic Vegetation	Low	Low	
		Nuisance and Toxic Blooms	Low		
Future Outlook (FO) ASSETS: 4	Future nutrient pressures	Future nutri	ent pressures	decrease	Improve Low

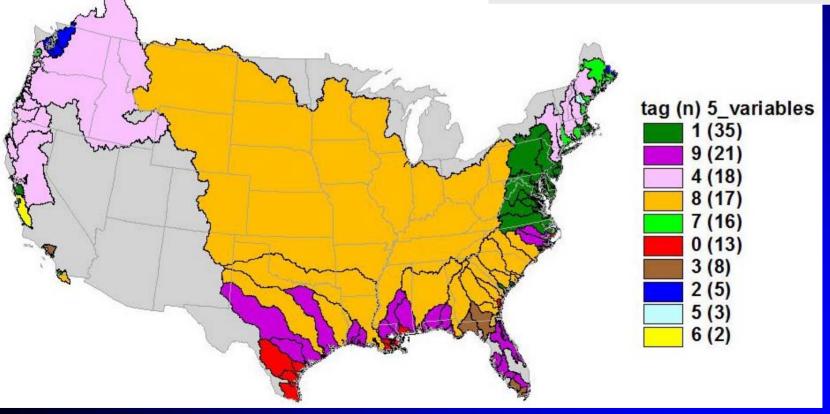
www.eutro.org/

ntt

<u>ה</u>

ASSETS systems and grades

ASSETS Synthesis (as percent assessed)

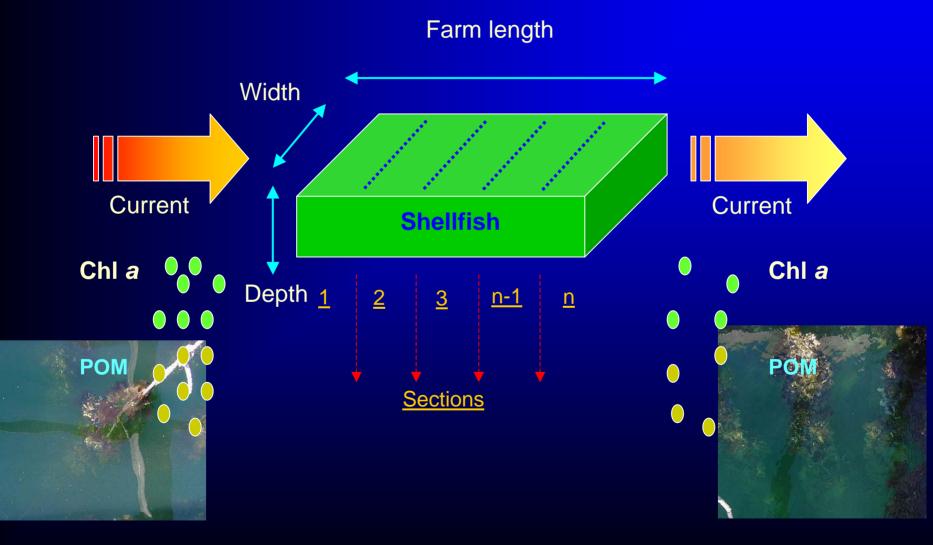

	US	US	EU	CN	
	1990s	2000s			
High	2	2	2 9	25	
Good	16	10	43	25	
Moderate	23	38	29		
Poor	44	23		25	
Bad	15	27		25	
					agemen allenge

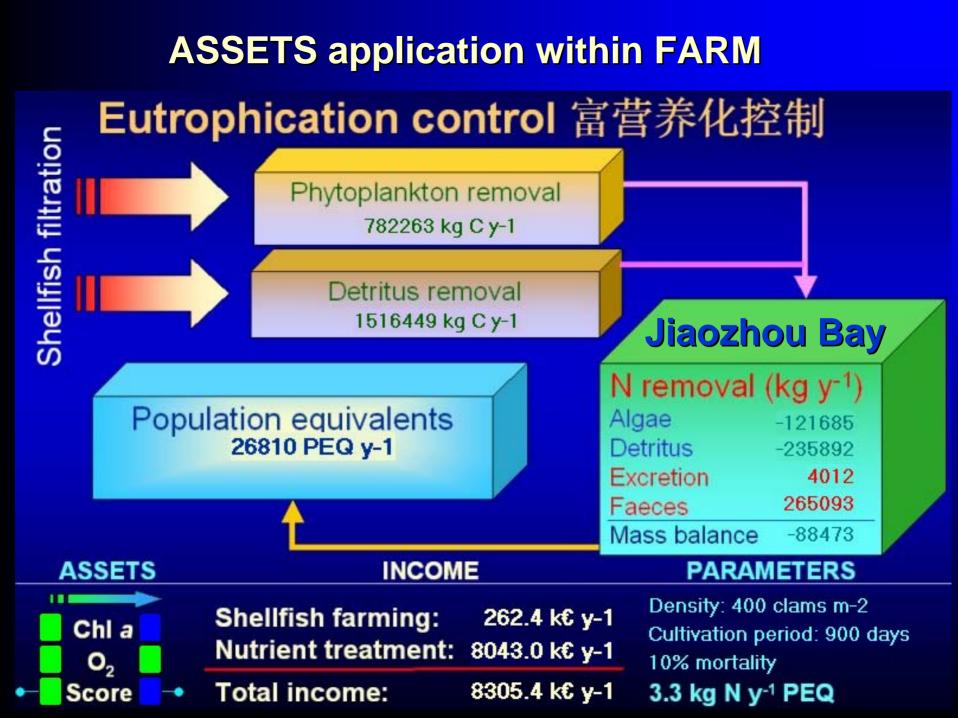
Total assessed in 1990s = 120, in 2000s = 48, EU = 7, CN = 4

US typology DISCO – Deluxe Integrated System for Clustering Operations (successor of LOICZView)

Example: Division into ten types

- 1. Mean depth;
- 2. Percentage open mouth;
- 3. Tide height;
- 4. log (freshwater flow/area);
- 5. Mean air temperature.




S. V. Smith, R. W. Buddemeier, S. B. Bricker, P. Pacheco, A. Mason, B.A. Maxwell. Estuarine Typology: Perturbations and Eutrophication Responses. ASLO/TOS ORC, February 2004.

Use of ASSETS with research models

	Methods	Parameters	Value	Level of expression	Index
Overall Eutrophic Condition (OEC)	PSM Field data	Chlorophyll <i>a</i> Epiphytes Macroalgae	0.25 0.50 0.96	0.57 Moderate	MODERATE
ASSETS OEC: 4	SSM	Dissolved Oxygen Submerged Aquatic Vegetation Nuisance and Toxic Blooms	0 0.25 0	0.25 Low	LOW
Overall Eutrophic Condition (OEC)	PSM Research	Chlorophyll <i>a</i> <i>Epiphyt</i> es Macroalgae	0.25 <i>0.50</i> 1.00	0.58 Moderate	
ASSETS OEC: 4	model	Dissolved Oxygen Submerged Aquatic Vegetation Nuisance and Toxic Blooms	0 0.25 0 28%	0.25 Low	MODERATE LOW
Overall Eutrophic Condition (OEC)	PSM Model green	Chlorophyll <i>a</i> <i>Epiphytes</i> Macroalgae	0.25 <i>0.50</i> 0.50	0.42 Moderate	MODERATE
ASSETS OEC: 4(5	anario	Dissolved Oxygen Submerged Aquatic Vegetation Nuisance and Toxic Blooms	0 0.25 0	0.25 Low	LOW

Farm-scale conceptual diagram

ASSETS SCI journal papers

□ Xiao, Y., Ferreira, J.G., Bricker, S.B., Nunes, J.P., Zhu, M., Zhang X., 2007. Trophic 2007 Assessment in Chinese Coastal Systems - Review of methodologies and application to the Changjiang (Yangtze) Estuary and Jiaozhou Bay. Estuaries and Coasts, In Press.

D. Whitall, S.B. Bricker, J.G. Ferreira, A.M. Nobre, T. Simas, M.C. Silva, 2007. Assessment of Eutrophication in Estuaries: Pressure-State-Response and Nitrogen Source Apportionment. Environmental Management, 40, 678-690.

□ J. G. Ferreira, A.J.S. Hawkins, S.B. Bricker, 2007. Management of productivity, environmental effects and profitability of shellfish aquaculture – the Farm Aquaculture Resource Management (FARM) model. Aquaculture, 264, 160-174.

□ J.G. Ferreira, S.B. Bricker, T.C. Simas, 2006. Application and sensitivity testing of an eutrophication assessment method on coastal systems in the United States and European Union. J. Environmental Management, 82, 433-445.

J. G. Ferreira, A. M. Nobre, T. C. Simas, M. C. Silva, A. Newton, S. B. Bricker, W. J. Wolff, P.E. Stacey, A. Sequeira, 2006. A methodology for defining homogeneous water bodies in estuaries – Application to the transitional systems of the EU Water Framework Directive. Estuarine, Coastal and Shelf Science, 66 (3/4), 468-482.

□ J.G.Ferreira, W.J.Wolff, T.C.Simas, S.B.Bricker, 2005. Does biodiversity of estuarine phytoplankton depend on hydrology? Ecological Modelling, 187(4) 513-523.

□ A.M.Nobre, J.G.Ferreira, A.Newton, T.Simas, J.D.Icely, R.Neves, 2005. Management of coastal eutrophication: Integration of field data, ecosystem-scale simulations and screening models. Journal of Marine Systems, 56 (3/4), 375-390.

Newton, A., Icely, J.D., Falcão, M., Nobre, A., Nunes, J.P., Ferreira, J.G., Vale, C., 2003.
 Evaluation of Eutrophication in the Ria Formosa coastal lagoon, Portugal. Continental Shelf
 Research, 23, 1945-1961.

Bricker, S.B., J.G. Ferreira, T. Simas, 2003. An Integrated Methodology for Assessment of Estuarine Trophic Status. Ecological Modelling, 169(1), 39-60.

Potential collaboration topics

□ Use historical data from the Venice Lagoon to test the sensitivity and responsiveness of ASSETS, given that the system has changed significantly over the years;

Apply system-scale ecological models to look at loading scenarios, and use the outputs to drive ASSETS, as a management-oriented tool;

□ Link these models to socio-economic work to try to improve the valuation aspect of management alternatives. Venice could be a template site for bringing this capability to ASSETS.

National and International Partners

